Nuevo récord de resolución en observación del cosmos desde la Tierra

La colaboración estima que en el futuro podrán hacer imágenes de agujeros negros que sean un 50% más detalladas de lo que era posible antes, lo que hará que la región inmediatamente fuera del límite de los agujeros negros supermasivos cercanos se enfoque con mayor nitidez.

Observaciones de galaxias distantes realizadas por la Colaboración EHT (Event Horizon Telescope) han conseguido alcanzar la resolución más alta jamás obtenida desde la superficie de la Tierra.

Una parte de su red global de radiotelescopios, que actúa en red para observar agujeros negros supermasivos, capturó luz de galaxias distantes a una frecuencia de alrededor de 345 GHz, equivalente a una longitud de onda de 0,87 mm. La colaboración estima que en el futuro podrán hacer imágenes de agujeros negros que sean un 50% más detalladas de lo que era posible antes, lo que hará que la región inmediatamente fuera del límite de los agujeros negros supermasivos cercanos se enfoque con mayor nitidez.

También podrán obtener imágenes de más agujeros negros aparte de los observados hasta ahora. Las nuevas detecciones, parte de un experimento piloto, se publican en The Astronomical Journal.

En el año 2019, la colaboración EHT publicó imágenes de M87 estrella, el agujero negro supermasivo que hay en el centro de la galaxia M87, y en 2022, dieron a conocer las imágenes de Sgr A estrella, el agujero negro que se encuentra en el corazón de nuestra galaxia, la Vía Láctea. Estas imágenes se obtuvieron conectando múltiples observatorios de ondas de radio de todo el planeta, utilizando una técnica llamada interferometría de línea de base muy larga (VLBI), para formar un solo telescopio virtual del tamaño de la Tierra.

Para obtener imágenes de mayor resolución, la comunidad astronómica suele confiar en telescopios más grandes o en una mayor separación entre observatorios que funcionan como parte de un interferómetro. Pero dado que el EHT ya tenía el tamaño de la Tierra, el aumento de la resolución de sus observaciones terrestres requería un enfoque diferente. Otra forma de aumentar la resolución de un telescopio es observar la luz de una longitud de onda más corta, y eso es lo que ha hecho ahora la colaboración EHT.

«Con el EHT vimos las primeras imágenes de agujeros negros utilizando las observaciones de longitud de onda de 1,3 mm, pero el brillante anillo, formado por la flexión de la luz provocada por la gravedad del agujero negro, todavía se veía borroso, ya que estábamos en los límites absolutos de cuán nítidas podíamos hacer las imágenes», afirma el colíder del estudio, Alexander Raymond (anteriormente, becario postdoctoral en el Centro de Astrofísica Harvard- Smithsonian (CfA), y ahora en el Laboratorio de Propulsión a Chorro (JPL). «A 0,87 mm, nuestras imágenes serán más nítidas y detalladas, lo que a su vez probablemente revelará nuevas propiedades, tanto las que se predijeron anteriormente como, tal vez, algunas que aún no hayan sido predichas.»

Para demostrar que podían hacer detecciones a 0,87 mm, la Colaboración realizó observaciones de prueba de brillantes galaxias distantes en esta longitud de onda. En lugar de utilizar el conjunto completo del EHT, emplearon dos subconjuntos más pequeños, los cuales incluían a ALMA y al Atacama Pathfinder EXperiment (APEX), instalados en el desierto de Atacama, en Chile. El Observatorio Europeo Austral (ESO) es socio de ALMA y, en cuanto a APEX, forma parte de la cooperación que alberga y opera la instalación. Otras instalaciones utilizadas incluyen el telescopio IRAM de 30 metros, en España, y el NOrthern Extended Millimeter Array (NOEMA), en Francia, así como el Telescopio de Groenlandia y el Submillimeter Array, en Hawái.

En este experimento piloto, la Colaboración logró observaciones con detalles de hasta 19 microsegundos de arco, lo que significa que observaron a la resolución más alta jamás obtenida desde la superficie de la Tierra. Sin embargo, aún no han podido obtener imágenes: si bien realizaron detecciones sólidas de luz de varias galaxias distantes, no se utilizaron suficientes antenas como para poder reconstruir con precisión una imagen a partir de los datos.

Esta prueba técnica ha abierto una nueva ventana para el estudio de los agujeros negros. Con el conjunto completo, el EHT podría ver detalles tan pequeños como a 13 microsegundos de arco, lo que equivale a ver el tapón de una botella en la Luna desde la Tierra. Esto significa que, a 0,87 mm, podrán obtener imágenes con una resolución aproximadamente un 50% superior a la de las imágenes de M87 estrella y SgrA estrella de 1,3 mm lanzadas anteriormente. Además, existe la posibilidad de observar agujeros negros más distantes, más pequeños y más débiles que los dos que la colaboración ha fotografiado hasta ahora.

El director fundador del EHT, Sheperd ‘Shep’ Doeleman, astrofísico del CfA y codirector del estudio, declaró en un comunicado: «Observar los cambios en el gas circundante en diferentes longitudes de onda nos ayudará a resolver el misterio de cómo los agujeros negros atraen y acretan materia, y cómo pueden lanzar poderosos chorros que fluyen a distancias galácticas».

Deja una respuesta

Su dirección de correo electrónico no será publicada.